nodejs-polars
    Preparing search index...

    Function intRange

    • Generate a range of integers.

      This can be used in a select, with_column etc. Be sure that the range size is equal to the DataFrame you are collecting.

      Parameters

      • opts: {
            dtype?: DataType;
            eager?: false;
            end: number | pl.Expr;
            start: number | pl.Expr;
            step?: number | pl.Expr;
        }

      Returns pl.Expr

      Expr or Series Column of integer data type dtype.

      > df.lazy()
      > .filter(pl.col("foo").lt(pl.intRange(0, 100)))
      > .collect()

      Generate an index column by using intRange in conjunction with :func:len.

       df = pl.DataFrame({"a": [1, 3, 5], "b": [2, 4, 6]})
      df.select(
      ... pl.intRange(pl.len()).alias("index"),
      ... pl.all(),
      ... )
      shape: (3, 3)
      ┌───────┬─────┬─────┐
      indexab
      │ --- ┆ --- ┆ --- │
      u32i64i64
      ╞═══════╪═════╪═════╡
      012
      134
      256
      └───────┴─────┴─────┘
    • Generate a range of integers.

      This can be used in a select, with_column etc. Be sure that the range size is equal to the DataFrame you are collecting.

      Type Parameters

      Parameters

      • opts: {
            dtype?: DT;
            eager: true;
            end: number | pl.Expr;
            start: number | pl.Expr;
            step?: number | pl.Expr;
        }

      Returns pl.Series<DT>

      Expr or Series Column of integer data type dtype.

      > df.lazy()
      > .filter(pl.col("foo").lt(pl.intRange(0, 100)))
      > .collect()

      Generate an index column by using intRange in conjunction with :func:len.

       df = pl.DataFrame({"a": [1, 3, 5], "b": [2, 4, 6]})
      df.select(
      ... pl.intRange(pl.len()).alias("index"),
      ... pl.all(),
      ... )
      shape: (3, 3)
      ┌───────┬─────┬─────┐
      indexab
      │ --- ┆ --- ┆ --- │
      u32i64i64
      ╞═══════╪═════╪═════╡
      012
      134
      256
      └───────┴─────┴─────┘
    • Generate a range of integers.

      This can be used in a select, with_column etc. Be sure that the range size is equal to the DataFrame you are collecting.

      Type Parameters

      Parameters

      • opts: {
            dtype?: DT;
            eager?: boolean;
            end: number | pl.Expr;
            start: number | pl.Expr;
            step?: number | pl.Expr;
        }

      Returns pl.Expr | pl.Series<DT, string>

      Expr or Series Column of integer data type dtype.

      > df.lazy()
      > .filter(pl.col("foo").lt(pl.intRange(0, 100)))
      > .collect()

      Generate an index column by using intRange in conjunction with :func:len.

       df = pl.DataFrame({"a": [1, 3, 5], "b": [2, 4, 6]})
      df.select(
      ... pl.intRange(pl.len()).alias("index"),
      ... pl.all(),
      ... )
      shape: (3, 3)
      ┌───────┬─────┬─────┐
      indexab
      │ --- ┆ --- ┆ --- │
      u32i64i64
      ╞═══════╪═════╪═════╡
      012
      134
      256
      └───────┴─────┴─────┘
    • Parameters

      • opts: {
            dtype?: DataType;
            eager?: boolean;
            high: number | pl.Expr;
            low: number | pl.Expr;
            step?: number | pl.Expr;
        }

      Returns pl.Expr | pl.Series<any, string>

      since 0.15.0 use start and end instead

    • Generate a range of integers.

      This can be used in a select, with_column etc. Be sure that the range size is equal to the DataFrame you are collecting.

      Parameters

      • start: number | pl.Expr

        Start of the range (inclusive). Defaults to 0.

      • Optionalend: number | pl.Expr

        End of the range (exclusive). If set to None (default), the value of start is used and start is set to 0.

      • Optionalstep: number | pl.Expr

        Step size of the range.

      • Optionaldtype: DataType

        Data type of the range.

      • Optionaleager: false

        Evaluate immediately and return a Series. If set to False (default), return an expression instead.

      Returns pl.Expr

      Expr or Series Column of integer data type dtype.

      > df.lazy()
      > .filter(pl.col("foo").lt(pl.intRange(0, 100)))
      > .collect()

      Generate an index column by using intRange in conjunction with :func:len.

       df = pl.DataFrame({"a": [1, 3, 5], "b": [2, 4, 6]})
      df.select(
      ... pl.intRange(pl.len()).alias("index"),
      ... pl.all(),
      ... )
      shape: (3, 3)
      ┌───────┬─────┬─────┐
      indexab
      │ --- ┆ --- ┆ --- │
      u32i64i64
      ╞═══════╪═════╪═════╡
      012
      134
      256
      └───────┴─────┴─────┘
    • Generate a range of integers.

      This can be used in a select, with_column etc. Be sure that the range size is equal to the DataFrame you are collecting.

      Type Parameters

      Parameters

      • start: number | pl.Expr

        Start of the range (inclusive). Defaults to 0.

      • Optionalend: number | pl.Expr

        End of the range (exclusive). If set to None (default), the value of start is used and start is set to 0.

      • Optionalstep: number | pl.Expr

        Step size of the range.

      • Optionaldtype: DT

        Data type of the range.

      • Optionaleager: true

        Evaluate immediately and return a Series. If set to False (default), return an expression instead.

      Returns pl.Series<DT>

      Expr or Series Column of integer data type dtype.

      > df.lazy()
      > .filter(pl.col("foo").lt(pl.intRange(0, 100)))
      > .collect()

      Generate an index column by using intRange in conjunction with :func:len.

       df = pl.DataFrame({"a": [1, 3, 5], "b": [2, 4, 6]})
      df.select(
      ... pl.intRange(pl.len()).alias("index"),
      ... pl.all(),
      ... )
      shape: (3, 3)
      ┌───────┬─────┬─────┐
      indexab
      │ --- ┆ --- ┆ --- │
      u32i64i64
      ╞═══════╪═════╪═════╡
      012
      134
      256
      └───────┴─────┴─────┘