nodejs-polars
    Preparing search index...

    Interface DataFrameConstructor

    DataFrame constructor

    interface DataFrameConstructor {
        deserialize(buf: Buffer, format: "json" | "bincode"): pl.DataFrame;
        isDataFrame(arg: any): arg is pl.DataFrame<any>;
        (): pl.DataFrame;
        <T1 extends ArrayLike<pl.Series<any, string>>>(
            data: T1,
            options?: DataFrameOptions<Schema, any>,
        ): pl.DataFrame<{ [K in pl.Series<any, string> as K["name"]]: K["dtype"] }>;
        <
            RecordInput extends Record<string, ArrayLike<any>> = any,
            S extends
                {
                    [K in string | number | symbol]: ArrayLikeLooseRecordToSchema<
                        RecordInput,
                    >[K]
                } = {
                [K in string
                | number
                | symbol]: ArrayLikeLooseRecordToSchema<RecordInput>[K]
            },
        >(
            data: RecordInput,
            options?: DataFrameOptions<S, any>,
        ): pl.DataFrame<S>;
        (data: any, options?: DataFrameOptions<Schema, any>): pl.DataFrame;
    }

    Hierarchy (View Summary)

    • Create an empty DataFrame

      Returns pl.DataFrame

    • Create a DataFrame from a JavaScript object

      Type Parameters

      • T1 extends ArrayLike<pl.Series<any, string>>

      Parameters

      • data: T1

        object or array of data

      • Optionaloptions: DataFrameOptions<Schema, any>

        options

        • Optionalcolumns?: any[]
        • OptionalinferSchemaLength?: number
        • Optionalorient?: "row" | "col"
        • Optionalschema?: S
        • OptionalschemaOverrides?: O

      Returns pl.DataFrame<{ [K in pl.Series<any, string> as K["name"]]: K["dtype"] }>

      > pl.DataFrame({ a: [1, 2, 3], b: ["a", "b", "c"] });
      shape: (3, 2)
      ┌─────┬─────┐
      ab
      │ --- ┆ --- │
      f64str
      ╞═════╪═════╡
      1.0a
      2.0b
      3.0c
      └─────┴─────┘

      To specify a more detailed/specific frame schema you can supply the `schema` parameter with a dictionary of (name,dtype) pairs...
      > const data = {col1: [0, 2], col2: [3, 7]}
      > pl.DataFrame(data, { schema: { "col1": pl.Float32, "col2": pl.Int64}} );
      shape: (2, 2)
      ┌──────┬──────┐
      col1col2
      │ --- ┆ --- │
      f32i64
      ╞══════╪══════╡
      0.03
      2.07
      └──────┴──────┘

      * Constructing a DataFrame from a list of lists, row orientation and columns specified
      * > const data = [[1, 2, 3], [4, 5, 6]];
      * > pl.DataFrame(data, { columns: ["a", "b", "c"], orient: "row" });
      shape: (2, 3)
      ┌─────┬─────┬─────┐
      abc
      │ --- ┆ --- ┆ --- │
      f64f64f64
      ╞═════╪═════╪═════╡
      1.02.03.0
      4.05.06.0
      └─────┴─────┴─────┘

      * Constructing an empty DataFrame with a schema
      * > const schema = {
      s: pl.String,
      b: pl.Bool,
      i: pl.Int32,
      d: pl.Datetime("ms"),
      a: pl.Struct([
      new pl.Field("b", pl.Bool),
      new pl.Field("bb", pl.Bool),
      new pl.Field("s", pl.String),
      new pl.Field("x", pl.Float64),
      ]),
      };
      * > pl.DataFrame({}, { schema }) or pl.DataFrame(null, { schema }) or pl.DataFrame(underfined, { schema });
      shape: (0, 5)
      ┌─────┬──────┬─────┬──────────────┬───────────┐
      sbida
      │ --- ┆ --- ┆ --- ┆ --- ┆ --- │
      strbooli32datetime[ms] ┆ struct[0] │
      ╞═════╪══════╪═════╪══════════════╪═══════════╡
      └─────┴──────┴─────┴──────────────┴───────────┘
    • Type Parameters

      Parameters

      Returns pl.DataFrame<S>

    • Parameters

      Returns pl.DataFrame

    Index

    Methods