Skip to content

Functions

Polars expressions have a large number of build in functions. These allow you to create complex queries without the need for user defined functions. There are too many to go through here, but we will cover some of the more popular use cases. If you want to view all the functions go to the API Reference for your programming language.

In the examples below we will use the following DataFrame:

DataFrame

df = pl.DataFrame(
    {
        "nrs": [1, 2, 3, None, 5],
        "names": ["foo", "ham", "spam", "egg", "spam"],
        "random": np.random.rand(5),
        "groups": ["A", "A", "B", "C", "B"],
    }
)
print(df)

shape: (5, 4)
┌──────┬───────┬──────────┬────────┐
│ nrs  ┆ names ┆ random   ┆ groups │
│ ---  ┆ ---   ┆ ---      ┆ ---    │
│ i64  ┆ str   ┆ f64      ┆ str    │
╞══════╪═══════╪══════════╪════════╡
│ 1    ┆ foo   ┆ 0.154163 ┆ A      │
│ 2    ┆ ham   ┆ 0.74005  ┆ A      │
│ 3    ┆ spam  ┆ 0.263315 ┆ B      │
│ null ┆ egg   ┆ 0.533739 ┆ C      │
│ 5    ┆ spam  ┆ 0.014575 ┆ B      │
└──────┴───────┴──────────┴────────┘

Column Selection

There are various convenience methods to select multiple or all columns.

Select All Columns

all

df_all = df.select([pl.col("*")])

# Is equivalent to
df_all = df.select([pl.all()])
print(df_all)

Select All Columns Except

exclude

df_exclude = df.select([pl.exclude("groups")])
print(df_exclude)

shape: (5, 3)
┌──────┬───────┬──────────┐
│ nrs  ┆ names ┆ random   │
│ ---  ┆ ---   ┆ ---      │
│ i64  ┆ str   ┆ f64      │
╞══════╪═══════╪══════════╡
│ 1    ┆ foo   ┆ 0.154163 │
│ 2    ┆ ham   ┆ 0.74005  │
│ 3    ┆ spam  ┆ 0.263315 │
│ null ┆ egg   ┆ 0.533739 │
│ 5    ┆ spam  ┆ 0.014575 │
└──────┴───────┴──────────┘

Column Naming

By default if you perform a expression it will keep the same name as the original column. In the example below we perform an expression on the nrs column. Note that the output DataFrame still has the same name.

df_samename = df.select([pl.col("nrs") + 5])
print(df_samename)
df_samename = df.select([pl.col("nrs") + 5])
print(df_samename)
shape: (5, 1)
┌──────┐
│ nrs  │
│ ---  │
│ i64  │
╞══════╡
│ 6    │
│ 7    │
│ 8    │
│ null │
│ 10   │
└──────┘

This might get problematic in case you use the same column muliple times in your expression as the output columns will get duplicated. For example the following query will fail.

try:
    df_samename2 = df.select([pl.col("nrs") + 5, pl.col("nrs") - 5])
    print(df_samename2)
except Exception as e:
    print(e)
column with name 'nrs' has more than one occurrences

You can change the output name of an expression by using the alias function

alias

df_alias = df.select(
    [
        (pl.col("nrs") + 5).alias("nrs + 5"),
        (pl.col("nrs") - 5).alias("nrs - 5"),
    ]
)
print(df_alias)

shape: (5, 2)
┌─────────┬─────────┐
│ nrs + 5 ┆ nrs - 5 │
│ ---     ┆ ---     │
│ i64     ┆ i64     │
╞═════════╪═════════╡
│ 6       ┆ -4      │
│ 7       ┆ -3      │
│ 8       ┆ -2      │
│ null    ┆ null    │
│ 10      ┆ 0       │
└─────────┴─────────┘

In case of multiple columns for example when using all() or col(*) you can apply a mapping function map_alias to change the original column name into something else. In case you want to add a suffix (suffix()) or prefix (prefix()) these are also build in.

Count Unique Values

There are two ways two count unique values in Polars one is an exact methodology and the other one is an approximantion. The approximation uses the HyperLogLog++ algorithm to approximate the cardinality and is especially usefull for very large datasets where an approximation is good enough.

n_unique · approx_unique

df_alias = df.select(
    [
        pl.col("names").n_unique().alias("unique"),
        pl.approx_unique("names").alias("unique_approx"),
    ]
)
print(df_alias)

shape: (1, 2)
┌────────┬───────────────┐
│ unique ┆ unique_approx │
│ ---    ┆ ---           │
│ u32    ┆ u32           │
╞════════╪═══════════════╡
│ 4      ┆ 4             │
└────────┴───────────────┘

Conditionals

Polars supports if-like conditions in expression with the when, then, otherwise syntax. The predicate is placed in the when clause and when this evaluates to true the then expression is applied otherwise the otherwise expression is applied (row-wise).

when

df_conditional = df.select(
    [
        pl.col("nrs"),
        pl.when(pl.col("nrs") > 2)
        .then(pl.lit(True))
        .otherwise(pl.lit(False))
        .alias("conditional"),
    ]
)
print(df_conditional)

shape: (5, 2)
┌──────┬─────────────┐
│ nrs  ┆ conditional │
│ ---  ┆ ---         │
│ i64  ┆ bool        │
╞══════╪═════════════╡
│ 1    ┆ false       │
│ 2    ┆ false       │
│ 3    ┆ true        │
│ null ┆ false       │
│ 5    ┆ true        │
└──────┴─────────────┘