polars.DataFrame.pipe#

DataFrame.pipe(func: Callable[[...], Any], *args: Any, **kwargs: Any) Any[source]#

Offers a structured way to apply a sequence of user-defined functions (UDFs).

Parameters:
func

Callable; will receive the frame as the first parameter, followed by any given args/kwargs.

args

Arguments to pass to the UDF.

kwargs

Keyword arguments to pass to the UDF.

Notes

It is recommended to use LazyFrame when piping operations, in order to fully take advantage of query optimization and parallelization. See df.lazy().

Examples

>>> def cast_str_to_int(data, col_name):
...     return data.with_column(pl.col(col_name).cast(pl.Int64))
...
>>> df = pl.DataFrame({"a": [1, 2, 3, 4], "b": ["10", "20", "30", "40"]})
>>> df.pipe(cast_str_to_int, col_name="b")
shape: (4, 2)
┌─────┬─────┐
│ a   ┆ b   │
│ --- ┆ --- │
│ i64 ┆ i64 │
╞═════╪═════╡
│ 1   ┆ 10  │
├╌╌╌╌╌┼╌╌╌╌╌┤
│ 2   ┆ 20  │
├╌╌╌╌╌┼╌╌╌╌╌┤
│ 3   ┆ 30  │
├╌╌╌╌╌┼╌╌╌╌╌┤
│ 4   ┆ 40  │
└─────┴─────┘
>>> df = pl.DataFrame({"b": [1, 2], "a": [3, 4]})
>>> df
shape: (2, 2)
┌─────┬─────┐
│ b   ┆ a   │
│ --- ┆ --- │
│ i64 ┆ i64 │
╞═════╪═════╡
│ 1   ┆ 3   │
├╌╌╌╌╌┼╌╌╌╌╌┤
│ 2   ┆ 4   │
└─────┴─────┘
>>> df.pipe(lambda tdf: tdf.select(sorted(tdf.columns)))
shape: (2, 2)
┌─────┬─────┐
│ a   ┆ b   │
│ --- ┆ --- │
│ i64 ┆ i64 │
╞═════╪═════╡
│ 3   ┆ 1   │
├╌╌╌╌╌┼╌╌╌╌╌┤
│ 4   ┆ 2   │
└─────┴─────┘